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INTRODUCTION 

When polyethylene terephthalate is melt-spun 
into fiber form and quickly quenched to room 
temperature, crystallization does not take place 
to any significant extent. The undrawn filament 
has not, at this stage, desirable textile yarn proper- 
ties. The molecules comprising the filament are 
in a random state of orientation. Normally a 
highly oriented and crystallized fibrous structure is 
produced by a process known as cold or hot drawing. 
However, it has been known that the amorphous 
polyethylene terephthalate filament can be 
stretched at low tension without causing any ob- 
semable crystallization at the temperature range 
just above the softening point. This phenomenon 
has been called as superdrawing or flow drawing.ls2 

Thompson2 discussed the superdrawing and 
strain-induced crystallization of polyethylene tere- 
phthalate using a viscoelastic theory based on the 
Maxwell equation and obtained good agreement 
between the theoretical results and experimental 
data. 

In  this paper an attempt was made to develop a 
mathematical viscoelastic model which would de- 
scribe the stress-strain relation of the amorphous 
polymeric material at temperatures above the 
softening point and this model compared with the 
experimental data. 

THEORY 

It was shown that if a unit cube of isotropic ma- 
terial, with its edges parallel to the coordinate axes 
x, y, z, is deformed into a cuboid with sides of 
length XI, XZ, and AS, the forces which must be 
applied perpendicular to the faces of the cuboid 
in order to support the deformation are given by 
t l X 2 X 3 ,  tZX3X1 ,  and t3XlX2, respectively, where t l ,  
t2, and t 3  are the forces per unit area acting on the 
faces perpendicular to three axes, respectively. 
We now consider a pure homogeneous deformation 

in which the extension ratios are changed from 
( h X 2 , X 3 )  to (XI + 6x1, XZ + 6X2, X3 + 6x3). The 
work done by the external forces Fat in this virtual 
deformation is 

6Fst = t i X z X 3 6 X i  + t 2 X 3 X 1 6 X z  + t a X i X z 6 X n  ( 1 )  

or 

In  the case of an incompressible isotropic material, 
the Xi  are not independent of each other, but related 
by 

X1X2X3 = 1 (3) 

or 

(4) 

Equation (2) is now valid for all values of 6x1,  

6x2, and 6x3 satisfying this condition. With the 
use of the method of undetermined multipliers 
to take account of this restriction, eqs. (l), (2), 
and (4) yield 

ti = (1/Xz&)(bFst/bXi) - p 

t 2  = (1/X3Xi)(dF~t/hh) - p (5 )  

t 3  = (1/Xib)(bF~t/bXs) - p 

where p is an arbitrary constant. 
In  the case of a simple extension, external force 

acts only in the direction parallel to the x-axis, while 
no forces are applied to the faces of the cube per- 
pendicular to the y- and z-axes. 

t z  = t 3  = 0 (6) 

(7) 

In  this case 

X2 = X3 = x l - ' / p  

Introducing these results into the eqs. (5 ) ,  we ob- 
tain 
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ti = (1/XzX3) (bFstlbX1) - (I/X3X1) (dF~t/bXz) 

= Xi(bFst/dXi) - (l/Xil’*) (bFst/bXz) (8) 
Now, we consider the deformation of a polymeric 

network structure. If it is assumed that the chain 
displacement vector undergoes an affine deforma- 
tion during extension, the strain energy function 
can be computed as a sum of the strain energy 
function of each individual network chains. 

N 

i=l  
Fs, = C (fst)1: (9) 

where (feJc is the strain energy function of the 
ith chain. N is the number of network chains in a 
unit volume. If we now let the number of the 
molecular chains traversing the unit area perpen- 
dicular to the x-axis be vz, then the sum of the 
strain energy function of these chains is written 

Y Z  

(Sst), = c (fst)i (10) 
a = 1  

with similar expression for (5JU and ( S s t ) p  
When the quantities N, v,, vy, and v z  are sufficiently 
large, we can write 

N = vz/(x) = vz/(y) = vz / ( z )  (11) 

for the isotropical network, where (x), (y), and 
(2)  are the mean values of the projection of the 
chain displacement vector on the x-, y-, and z-axes 
and where J: 2 0, y 2 0, and z 2 0. By use of 
this relation eq. (10) can be rewritten 

From this relation, it can be seen that (SSt), is 
the strain energy function for a thin disk, (x) in 
height, cross-sectioned perpendicularly to the ex- 
tension direction from the cuboid. 

When the body is stretched and its macroscopic 
deformation is expressed by (XllX2,X3), the com- 
ponents of the chain displacement vector are 
X1xo, Xzyo, and X3zo, respectively, where xo, yo, and 
zo are the components of the chain displacement 
vector in the absence of the external force. The 
force acting on the upper and lower faces of the 
above thin disk is obtained by summation of the 
tension for these vz chains 

It can be seen from eq. (13) that ey. (8) can be 
expressed as follows : 

tl  = [Sum of the tension of the total molecular 
chains traversing a unit cross section] 
- [Sum of the tension of the total molecular 
chains traversing a unit lateral face] (14) 

When the deformation contains plastic flow, a 
part of the external work is dissipated as the work 
done against the internal viscous resistance. In 
this case, ey. (8) cannot be used to calculate the 
force, while the relation (14) may be used, pro- 
vided that the stress propagates only through the 
network chains. 

One-Dimensional Model 

Let us now consider the deformation of a plastic 
body. In  the first place, for simplicity, we con- 
sider the one-dimensional problem. It is as- 
sumed that all chains have the same length lo 
in the equilibrium state. The simplest assumption 
one can make for the elasticity of the chain is that 
the tension of the chain is proportional to the ex- 
tension, i.e. : 

f = ckT[(Z/Zo) - I ]  (15) 

where k is Boltzmann’s constant, T the absolute 
temperature, and c is a constant which depends 
on the chemical nature of the material. 

Now we consider the deformation of the chain 
(Fig. 1). Two end points of a chain, A and B, 
move to A‘ and B’ after the deformation, re- 
spectively. We denote the distance between A’ 
and B’ by Zl, and the displacement BB’ by Z2. 
Then the virtual length of the chain is Z1, while Z2 
is the flow distance. In  this case we must use Zl 
as the chain length in eq. (15). The sum of the 
tension of chains traversing the cross section is 
given by 

5 = ckT C [(ZJZo) - 13 
i = I  

Po 

Fig. 1. Displacernent of molecular chains. 
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In general, the velocity of the viscous flow of the 
chain end is a function of the extension of the 
chain. For simplicity we assume that the velocity 
of the viscous flow of the chain end is proportional 
to the virtual extension of the chain, i.e. : 

where P is a proportional constant. Since we 
assumed Hooke's law for the elasticity, eq. (17) 
means that the flow of the molecular chain is 
Newtonian flow. 

For extension a t  a constant rate the simplest 
possible expression for the displacement of the 
chain is that the position of one end of the chain 
moves with the same velocity as that of the macro- 
scopic deformation, while the displacement of the 
opposite end is determined by eq. (17).  
These relations are expressed by 

I = lo(1 + at) 

azz/at = d(Z - A) /&  = P(l1 - l o )  

(18) 

(19) 

where a is the extension rate. Thus we have: 

(dli/dt) + Pli = (dl/dt) + Plo 
= M a  + P)  (20) 

From this equation we have the expression for the 
virtual elongation of the chain: 

El = lo + ( a / ~ )  lo ( I  - e-Bt) 

5 = ckTv(a/~)(1 - , -s t )  

(21) 

Inserting eq. (21) into eq. (16) we obtain: 

(22) 

Now we have to calculate the number of chains 
penetrating the cross section. On stretching, the 
cross-sectional area become narrower. Though 
the number of chains traversing the cross section is 
unaltered in pure elastic deformation, when viscous 
flow of the molecular chain takes place, it de- 
creases with deformation. In the later case the 
number of chains may be written 

v = Y O ( l l / l )  (23) 

where YO is the number of chains traversing the 
cross section in the absence of external force. 
Inserting eqs. (18) and (21) into eq. (23) we ob- 
tain : 

v = [ 1 / ( 1  + 4 3 [ 1  + (a/P)(l  - e-'?] (24) 

Using this we obtain an expression for the force 
necessary to stretch the sample a t  constant rate: 

Replacing cut by f we rewrite the above relation : 

+ (m) [I - e - E / r a ] }  (28) 

The initial elastic modulus is obtained by differen- 
tiation with respect to 5 and putting 5 = 0. 

(ds /dt ) ,  = o = Eo (29) 

The tension referred to the deformed cross- 
sectional area is given by 

F = 5 0  + 5 )  
= E o f ( r a ) 2 [ 1  - e- -E/Ta]Z  + ( r a ) [ l  - e - E / r a ] )  

(30) 

When the deformation is small, the first term in 
the braces can be neglected as compared with the 
second term, and eq. (30) can be reduced to: 

F 1: E O ( ~ ) ( I  - e-€lra) (31) 

This expression is equivalent to that calculated 
for the Maxwell model. Therefore the quantity 

TEO 70 (32) 

corresponds to the viscosity constant of the dashpot 
of the Maxwell Model, where Eo is the spring con- 
stant and r the relaxation time. 

Three-Dimensional Model 

To calculate the stress of the three-dimensional 
model, the assumptions of the kinetic theory in the 
Gaussian approximation will be adopted. It is 
known that the strain energy function of a de- 
formed chain is given by 

fat = (CkT/2)(XI2 + A 2  + Aa2) 

A1 = x/xo 

A2 = Y/Yo 

A3 = 2/20 

(33) 

where 

and where X1, Xz, and Xa are the macroscopic de- 
formations in the x-, y-, z-directions, and x, y, z 
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are the components of the chain displacement 
vector connecting the chain ends in the deformed 
state. 

If we now let the numbers of chains traversing 
the unit areas perpendicular and parallel to the ex- 
tension direction be vI and V I I ,  respectively, then 
the sum of the tension of these chains are given by 

"I 

i- 1 
t i  = ckT C (l/'xoJ (xi/xoi) 

i l l  = ckT C (llYotl(Yi/YoJ 

(34) 

(35) 
" 1 1  

i = l  

Now let us consider the virtual chain length and the 
number of traversing chains. If we assume 
Newtonian viscosity for the flow of the molecular 
chain, then by the analogous treatment as in the 
preceding one-dimensional model, x can be ex- 
pressed by 

x = xo[l + ( a / ~ ) ( 1  - e-'7] (36) 

If the material is imcompressible, x and y are related 
by 

We then have, on the average, 

(x)(d2 = (XOY (37) 

(38) y = yo[l + (a/p)(l  - e - - B t ) ] - ' / 2  

. Let the number of molecular chains traversing the 
unit cross-sectional area in the undeformed state be 
v0. The number of chains penetrating the cross 
section will decrease after the deformation in the 
way expressed by eq. (23). Considering the 
decrease of the cross-sectional area we get 

V l l  = (1 + at)vo(x/zJ 

= va[l + ( a / ~ ) ( l  - e - 9 1  (39) 

where xa is the apparent deformation corresponding 
to 1 in the one-dimensional model and x is the vir- 
tual component of the displacement vector in the 
direction of the external force. Analogously, the 
number of chains traversing the unit area parallel 
to the extension direction is given by 

vI = vo[l + (a/P)(l - e - s t ) ] - ' / 2  (40) 

On the basis of these relations the tension is given 
by 
8' = s ( 1  + at) = tll - t l  

I I Td=co 

"" I 
1 I 

50 100 150 200 
STRAIN ( % )  

Fig. 2. Calculated stress-strain curves for various values of 
Tff. 

The tension per initial unit cross section is 

where No is the number of chains per unit volume 
and given by eq. (1 1). 

When viscous flow does not occur, the tension is 
obtained by putting P = 0 in eq. (42) : 

This expression is just the same as that for the 
rubber elasticity. 

In the case of actual polymer, one might expect 
that eqs. (25) and (42) represent a very drastic 
oversimplification of the actual mechanism of the 
deformation. Apart from the adequacy of using 
the Gaussian approximation, it seems more rea- 
sonable to postulate the existence of an array of 
chains which can be divided into discrete sets of 
markedly different character. Let hs suppose 
that there are N ,  chains with elastic constant 
ci and relaxation time rt pr unit cube. Then eq. 
(42) can be replaced by 

- [I + (Tia)(1 - e-t/Ti)]-l] (44) 
Figure 2 shows the load-elongation curves calcu- 

lated by eq. (25) for various (m). All curves 
start with same initial slope and attain to the max- 
imum point. After passing the maximum point 
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the load declines steadily and asymptotically ap- 
proaches the abscissa. The load-elongation curves 
calculated by eq. (42) decline more rapidly. 

EXPERIMENTAL AND RESULTS 

We used a polyethylene terephthalate undrawn 
filament whose intrinsic viscosity [ q ]  in o-chloro- 
phenol at 25OC. is 0.60, and whose birefringence 
is 0.0022 and density is 1.340 at 25°C. An 
Instron-type tensile testing machine was used for 
the measurement of the stress-strain curves. 
For measurement a t  elevated temperature an 
electrically heated bath was placed around the 
sample. Measurements were made over the tem- 
perature range from 80 up to 120°C. at various 
rates of extension. The initial sample length was 
10 em. 

Stress-strain curves measured in the water bath 
are shown in Figures 3-7. The curves observed 
in the glycerin bath are shown in Figures 8-14. 

As the result of increase of the molecular mo- 
bility, the stress induced by strain decreases \with 
rising temperature. The behavior of the ma- 
terial tends towards that of a simple elastoviscous 
fluid, and in some appropriate condition the fila- 
ment can be extended to unusually large extensions. 
At low temperature and high rate of extension, 
the stress-strain curve is a sigmoid. This sigmoidal 
shape of stress-strain curve indicates a finite 

30 1 I 

I 
50 Hx) 150 200 

STRAIN ( % )  
Fig. 3. Stress-strain curves measured at 80°C. in water. 

2 20 c 

I 
50 100 150 200 

STRAIN ( % 1 

Fig. 4. Stress-strain curves measured at 85°C. in water. 

50 100 I50 200 

STRAIN ( % I  

Fig. 5. Stress-strain curves measured at 90°C. in water. 

I 
50 IM) 150 200 

STRAIN ( % I  

Fig. 6. Stress-strain curves measured a t  95°C. in water. 

I 
50 100 150 200 

STRA IN ( % I  
Fig. 7. Stress-strain curves measl~red at  100°C. in water. 
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I 
50 100 I50 200 

STRA I N ( % )  

Fig. 8. Stress-strain curves measured at 90°C. in glycerin. 

I 1 

P .- 
C I  

1 
50 1w 150 200 

STRAIN ( % I  
Fig. 9. Stress-strain curves measured a t  95°C. in glycerin. 

10. 20 

Mo 150 209 
STRAIN ( % I  

Fig. 10. Stress-strain curves measured at 100°C. in 
glycerin. 

I 

50 I 
I 

50 100 150 200 
STRAIN ( ' % I  

Fig. 11. Stress-strain curves measured a t  105°C. in 
glycerin. 

I 
50 109 150 200 

STRA I N ( % I  

Fig. 12. Stress-strain curves measured at 110OC. in 
glycerin. 

q 1 0 1  

I 
50 100 150 200 

STRAIN ( % I  

Fig. 13. Stress-strain curves measured a t  115OC. in 
glycerin. 

STRAIN I % I 

Fig. 14. Stress-strain curves measured a t  120°C. in 
glycerin. 

c, 
Fig. 15. S,/E vs. &,,. Data obtained in water at various 

temperatures and rates of extension: (0) 80OC.; (0) 85OC.; 
(A) 90°C.; ( 0 )  95OC.; ( X )  100°C. 
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ern 

Fig. 16. 5,lE vs. 4,. Data obtained in glycerin at 
various temperatures and rates of extension: ( 0 )  100°C.; 
(0) 105°C.; (A) 110OC.; ( A )  115°C.; ( 0 )  120°C. 

extensibility and orientation of a long-chain 
molecules. This reinforcement may be attributed 
to the strain-induced crystallization as pointed out 
by Thompson.2 On the other hand, a t  higher 
temperature and low rate of extension, some 
reinforcement does occur, presumably due to 
crystallization induced by an increase of the thermal 
motion. Therefore, in order to observe the super- 
drawing phenomenon in polyethylene terephthalate 
an appropriate range of the straining rate and tem- 
perature is required. 

It was seen that the stress-strain curves repre- 
sented by eqs. (28) and (42) have a maximum. 
The strain at which the tensile stress attains the 
maximum value is obtained by differentiating the 
equation with respect to 4 and equating to zero. 
Differentiating eq. (28) and equating to zero we 
get: 

+ ~ ] e - ~ " *  (45) 

The elongation corresponding to the maximum 
tensile force, &, is given by ey. (45). Inserting 
Ern into eq. (28) yields the theoretical relation 
between the maximum value of the tensile force 
Trn and the corresponding strain lm. In  Figure 15 
Srn/Eo is plotted against Ern for the data observed 
in the water bath. The corresponding relation for 
the data obtained in the glycerin bath is shown in 
Figure 16. The solid curve in the figure is the 
theoretical curve. In  each case all experimental 
data agree quite well with the theoretical curve. 

TABLE I 
Initial Modulus EO 

E~ x 10-4, 

In water 80 7 .48  3 

Temp., "C. g./rm.2 

85 6 .46  
90 4.76 
95 3 .67  

100 3.26 

In glycerin 100 7 .65  
105 6 .12  
110 5 . 1 0  
115 4 .47  
120 4 .08  

The initial elastic modulus data derived from the 
initial slope of the stress-strain curves are sum- 
marized in Table I. 

When trn is known, the relaxation time r is 
calculated as a function of i t  by eq. (45). Then 
the viscosity coefficient can be calculated by eq. 
(32). The obtained values are shown in Table I1 
and plotted against temperature in Figures 17 
and 18. It can be seen that the viscosity coefficient 
depends not only on the temperature, but on the 
rate of extension. The variance of log 90 with 
(1 /T)  a t  several rates of extension is approximately 
represented by a set of parallel lines obeying the 
following relationships : 

In  water: 

rlo = C Y - O . ~  exp { -36.6 + 17200(1/T) ] 
In  glycerin: 

9o = cy-0.512 exp { -28.7 + 15100(1/T),) 

It is seen to obey an Arrhenius relation and esti- 
mated activation energies are 34 kcal./mole in 

Fig. 17. Temperat,ure dependence of viscosity in water. 
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TABLE I1 

Temp., log 70, g./cm.2/sec., a t  various extension rates 

"C. lO%/min. 

In water 80 6.65 
85 6.26 
90 
95 

100 

In glycerin 100 6.44 
105 6.32 
110 
115 
120 

20%/min. 50 %/min. 

6.49 6.32 
6.19 5.99 

5.55 
5.43 

6.45 6.28 
6.17 6.00 

5.67 

100%/min. 200yo/min. 5OO%/min. 

6.16 
5.83 
5.51 
5.31 

6.20 
5.83 
5.50 
5.38 

5.91 
5.45 
5.41 
5.25 

5.93 
5.75 
5.52 
5.27 

5.70 
5.49 
5.25 
4.94 
4.60 

5.62 
5.47 
5.18 
5.02 

5.56 
5.29 
5.01 
4.81 
4.43 

5.50 
5.27 
5.05 
4.87 
4.75 

water and 30 kcal./mole in the glycerin. Marshall 
and Todd3 measured the melt viscosity of poly- 
ethylene terephthalate. They showed that the 
activation energy of melt viscosity decreases with 
the limiting viscosity number to the low molecular 
weight region. In the low molecular weight region 
their observed values are scattered, and therefore 
it is difficult to deduce an accurate value of the 
activation energy from their results. However, 

I . . . . . . . . . . . I  
256 260 264 268 m 

I I / T )  x I 0 5  

Fig. 18. Temperature dependence of viscosity in glycerin. 

E - 
? 
" a 6  

b 
-4 

X 

I i i 4  

1 *' i 90 MO 110 im 
TEMPERATURE ( "C 1 

Fig. 19. Temperature dependence of initial elastic modulus: 
(0 )  in water; (0) in glycerin. 

the activation energy of the melt viscosity of poly- 
ethylene terephthalate whose molecular weight is 
comparable with that of our sample would be pre- 
sumably between 20 and 40 kcal./mole. Thomp- 
son obtained the activation energy of the critical 
strain rate as about 50 kcal./mole. 

Initial elastic modulus and viscosity coefficients 
measured in the water and glycerin are plotted 
against temperature in Figures 19 and 20. The 
values observed in the water a t  any temperature is 
nearly equal to that obtained in glycerin a t  a tem- 
perature about 2OOC. higher. This means that 
water attacks polyethylene terephthalate and 
lowers the softening point about 2OOC. 

The author wishes to  express his sincere appreciation to 
Dr. H. Nobayashi, Director of Research Department, for 
permission to  publish these results. 
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Fig. 20. Temperature dependence of viscosity at various 
rates of extension: (m, A, 0)  in water; (0, A, 0) in glycerin. 
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Synopsis 
A viscoelastic theory based on a simple model is developed 

to describe the stress-strain relation of amorphous plastics 
above the glass temperature. One of the bases of the 
theory is that the stress is proportional to the number of 
molecular chains traversing a unit cross section. Experi- 
mental results for the stress-strain relation of amorphous 
polyethylene terephthalate in the range 80-120°C. are pre- 
sented. These are shown to agree with the theory within 
the experimental error. 

Rbsumb 
On dkvelQppe und theorie visco6lastique bashe sur un 

modble simple, afin de decrire la relation tension-force de 
plastiques amorphes a u  dessus de la temperature de transi- 

tion vitreuse. Une des bases de la theorie admet que la 
tension est proportionnelle au nombre de chaines mol&cu- 
laires traversant une section unitaire transversale. On 
prbente des rbultats expbrimentaux pour la relation ten- 
sion-force du terephthalate de pcly6thylhne amorpche dans 
1e domaine de tempkratures de 80 rl 120°C. On b i t  que 
ceux-ci concordent avec la thborie, endbns les erreurs 
exp6rimentales. 

Zusammen fassung 

Zur Beschreibung des Spannungs-Dehnungsverhaltens 
von amorphen plastischen Stoffen oberhalb der Glastem- 
peratur wurde eine auf einem einfachen Model1 beruhende 
Viskoelastizitatstheorie entwickelt. Eine der Grundan- 
nahmen der Theorie ist, dam die Spannung der Zahl der 
Molekulketten, die den Einheitequenchnitt durchsetzen, 
proportional ist. Experimentelle Ergebnisse fur das Span- 
nungs-Dehnungsverhalten von amorphem Polyhthylen- 
terephtalat im Bereich von 8&12OoC werden angegeben. 
Dieee Ergebnisse stimmen innerhalb des experimentellen 
Fehlers mit der Theorie uberein. 
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